Package com.rapidminer.operator.RatingPrediction

Source Code of com.rapidminer.operator.RatingPrediction.UserAttributeKnnO

package com.rapidminer.operator.RatingPrediction;

import java.util.List;

import com.rapidminer.data.EntityMapping;
import com.rapidminer.data.IEntityMapping;
import com.rapidminer.data.IRatings;
import com.rapidminer.data.Ratings;
import com.rapidminer.data.SparseBooleanMatrix;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeRole;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.ExampleSetPassThroughRule;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.MetaData;
import com.rapidminer.operator.ports.metadata.SetRelation;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.ParameterTypeInt;
import com.rapidminer.tools.Ontology;


/**
* UserAttributeKnn operator for Rating Prediction
*
* @see com.rapidminer.operator.RatingPrediction.UserAttributeKnnO
* @see com.rapidminer.operator.RatingPrediction.UserAttributeKnn
*
* @author Matej Mihelcic (Ru�er Bo�kovi� Institute)
*/


public class UserAttributeKnnO extends Operator {


      public static final String PARAMETER_K = "k";
      public static final String PARAMETER_Min="Min Rating";
      public static final String PARAMETER_Range="Range";
      public static final String PARAMETER_REGU="reg_u";
      public static final String PARAMETER_REGI="reg_i";
     
      private InputPort exampleSetInput = getInputPorts().createPort("example set");
      private InputPort exampleSetInput1=getInputPorts().createPort("user attributes");
      private OutputPort exampleSetOutput1 = getOutputPorts().createPort("Model");
      private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");

     
     
      public List<ParameterType> getParameterTypes() {
         List<ParameterType> types = super.getParameterTypes();
         types.add(new ParameterTypeInt(PARAMETER_K, "The used number of nearest neighbors. Range: integer; 1-+?; default: 80", 1, Integer.MAX_VALUE, 80, false));
         types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
         types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
         types.add(new ParameterTypeDouble(PARAMETER_REGU, "Regularization parameter for user biases.  Range: double; 0-+?; default: 10 ;", 0, Double.MAX_VALUE, 10, true));
         types.add(new ParameterTypeDouble(PARAMETER_REGI, "Regularization parameter for item biases.  Range: double; 0-+?; default: 5 ;", 0, Double.MAX_VALUE, 5, true));
         return types;
         }
     
      /**
       * Constructor
       */
      public UserAttributeKnnO(OperatorDescription description) {
        super(description);

        exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "user identification", Ontology.ATTRIBUTE_VALUE));
        exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "item identification", Ontology.ATTRIBUTE_VALUE));
        exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "label", Ontology.ATTRIBUTE_VALUE));
       
        getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, exampleSetOutput, SetRelation.EQUAL) {
        });
       
        getTransformer().addRule(new GenerateNewMDRule(exampleSetOutput1, new MetaData(RatingPredictor.class)) {
                
         });
       
      }

      @Override
      public void doWork() throws OperatorException {
       
        ExampleSet exampleSet = exampleSetInput.getData();
           
            IEntityMapping user_mapping=new EntityMapping();
            IEntityMapping item_mapping=new EntityMapping();
            IEntityMapping attr_mapping=new EntityMapping();
            IRatings training_data=new Ratings();
           
             if (exampleSet.getAttributes().getSpecial("user identification") == null) {
                      throw new UserError(this,105);
                  }
             
             if (exampleSet.getAttributes().getSpecial("item identification") == null) {
                      throw new UserError(this, 105);
                  }
            
             if (exampleSet.getAttributes().getLabel() == null) {
                      throw new UserError(this, 105);
                  }
            
             Attributes Att = exampleSet.getAttributes();
             AttributeRole ur=Att.getRole("user identification");
             Attribute u=ur.getAttribute();
             AttributeRole ir=Att.getRole("item identification");
             Attribute i=ir.getAttribute();
             Attribute ui=Att.getLabel();

            for (Example example : exampleSet) {
             
              double j=example.getValue(u);
              int uid=user_mapping.ToInternalID((int) j);
             
              j=example.getValue(i);
              int iid=item_mapping.ToInternalID((int) j);
             
              double r=example.getValue(ui);
              training_data.Add(uid, iid, r);
             
            }
           
           
            ExampleSet attribute_set=exampleSetInput1.getData();
            Attributes aatr = attribute_set.getAttributes();
            AttributeRole ar=aatr.getRole("attribute identification");
            Attribute at=ar.getAttribute();

            ur=aatr.getRole("user identification");
            i=ur.getAttribute();

            SparseBooleanMatrix mat=new SparseBooleanMatrix();
         
           
              for (Example example : attribute_set) {
             
              double j;

              j=example.getValue(i);
              int iid=user_mapping.ToInternalID((int) j);
             
              j=example.getValue(at);
              int aid=(int)j;
             
              mat.setLocation(iid, aid, true);
            }
            
             UserAttributeKnn recommendAlg=new UserAttributeKnn();
           
            
             int K=getParameterAsInt("k");
             double regU=getParameterAsDouble("reg_u");
             recommendAlg.RegU=regU;
             double regI=getParameterAsDouble("reg_i");
             recommendAlg.RegI=regI;
             recommendAlg.user_mapping=user_mapping;
             recommendAlg.item_mapping=item_mapping;
             recommendAlg.attribute_mapping=attr_mapping;
             recommendAlg.SetK(K);
             recommendAlg.SetMinRating(getParameterAsInt("Min Rating"));
             recommendAlg.SetMaxRating(recommendAlg.GetMinRating()+getParameterAsInt("Range"));
            
             recommendAlg.SetRatings(training_data);
             recommendAlg.SetUserAttributes(mat);

             recommendAlg.Train();
            
            exampleSetOutput.deliver(exampleSet);
            exampleSetOutput1.deliver(recommendAlg);
            }
      }
TOP

Related Classes of com.rapidminer.operator.RatingPrediction.UserAttributeKnnO

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.